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Tóm tắt nội dung
Báo báo này liên quan đến các hệ thống động mà động lực là affine theo đầu vào điều khiển.
Động lực của hệ được xem xét để viết lại trong một dạng chính tắc, gọi là biểu diễn Hamilton
thụ động, nhằm giúp khảo sát rõ hơn các đặc tính cấu trúc và thiết kế điều khiển (như ma trận
kết nối/giảm chấn, hàm trữ năng bị chặn và thiết kế bộ điều khiển tỉ lệ). Hệ khối lượng lò xo
giảm xóc được sử dụng để minh họa phương pháp. Mô phỏng số được thực hiện trong vòng hở
và vòng kín.

Từ khóa: Biểu diễn Hamilton, mô hình hóa, hệ động lực, thụ động, bộ điều khiển tỉ lệ.

Abstract
This work concerns dynamical systems whose dynamics are affine in the control input. Such
dynamics are considered to write into a canonical form, namely the passive port-Hamiltonian
representation in order to explore further some structural properties usable for the control
design (such as interconnection and damping matrices, bounded Hamiltonian storage function
and proportional feedback controller design). The case of a mass-spring-damper system is used
to illustrate the approach. Besides, numerical simulations are included in both the open loop
and closed loop.

Keywords: Port-Hamiltonian representation, modeling, dynamical systems, passivity,
proportional controller.

1. INTRODUCTION

This paper deals with the port-based modeling of general
nonlinear dynamical systems Khalil (2002); Ortega et al.
(1998); Van der Schaft (2017); Brogliato et al. (2007)
whose dynamics are described by a set of Ordinary Dif-
ferential Equations (ODEs) and affine in the input u as
follows :

�
x = f(x) + g(x)u, x(t = 0) = xinit (1)

where x = x(t) is the state vector in the operating region
D ∈ Rn, f(x) ∈ Rn expresses the smooth (nonlinear)
function with respect to the vector field x. The input-state
map and the control input are represented by g(x) ∈ Rn×m

? The material in this paper was partially presented at the 4th Con-
ference on Electrical, Electronics, Communications and Automation
(EECA), October 28, 2017, Duy Tân University, Đà Nẵng, Việt Nam.

and u ∈ Rm, respectively. It is worth noting that many
industrial applications occurred in electrical systems, elec-
tromechanical systems or biochemical systems, etc. belong
to this kind of systems Maschke et al. (2000); Van der
Schaft (2000); Ortega et al. (2001, 2002); Antonelli and
Astolfi (2003); Favache and Dochain (2010); Ramírez et al.
(2013); Guay and Hudon (2016).

In addition to the Bond graph modeling 1 Couenne et al.
(2006); Eberard et al. (2007); Vu et al. (2016), the port-
based modeling Maschke et al. (2000); Van der Schaft
(2000) leads to extension of the so-called port-Hamiltonian
(pH) systems. It is always important to transfer the
(original) dynamics of the systems to the port Hamil-

1 In general, the Bond graph representation of physical systems com-
bines the effort variables with the flow variables (or the generalized
efforts with the generalized flows) through junctions.



tonian representation prior to developing state feedback
laws for control Ortega et al. (2002, 2008); Ortega and
Borja (2014); Sira-Ramírez and Angulo-Núnez (1997);
Sira-Ramírez (1998). In other words, once a canonical form
(i.e., expressed by the pH model Maschke et al. (2000);
Van der Schaft (2000); Ortega et al. (2001)) of the system
dynamics is a priori derived, then the passivity-based con-
trol strategy or interconnection and damping assignment
passivity-based control (IDA-PBC) and other extensions
(such as the energy shaping control or tracking-error-based
control) can be advantageously applied to show stabiliza-
tion properties. The proportional feedback law design and
control scenarios proposed for the simulations are main
contributions of this work.

This paper is organized as follows. Section 2 gives a brief
overview of the pH representation of (affine) nonlinear
dynamical systems. Section 3 is devoted to the modelling
and control design of a mass-spring-damper system in
the pH framework. Some further discussions are given in
Section 4. Section 5 ends the paper with some concluding
remarks.

Notations: The following notations are considered through-
out the paper :

• R is the the set of real number.
• > is the matrix transpose operator.
• m and n (m ≤ n) are the positive integers.
• xinit is the initial value of the state vector.

2. THE PASSIVE PORT-HAMILTONIAN
REPRESENTATION OF AFFINE DYNAMICAL

SYSTEMS

Assume that if the function f(x) verifies the so-called
separability condition Guay and Hudon (2016); Dörfler
et al. (2009); Ramírez et al. (2009); Favache et al. (2011);
Hudon et al. (2015); Hoang et al. (2017), that is, f(x)
can be decomposed and expressed as the product of some
(interconnection and damping) structure matrices and the
gradient of a potential function with respect to the state
variables, i.e., the co-state variables :

f(x) = [J(x)−R(x)]
∂H(x)

∂x
(2)

where J(x) and R(x) are the n× n skew-symmetric inter-
connection matrix (i.e., J(x) = −J>(x)) and the n × n
symmetric damping matrix (i.e. R(x) = R>(x)), respec-
tively while H(x) : Rn −→ R represents the Hamiltonian
storage function of the system (possibly related to the total
energy of the system). Furthermore, if the damping matrix
R(x) is positive semi-definite,

R(x) ≥ 0 (3)
Then, the original dynamics described by (1) is said to be a
pH representation with dissipation Maschke et al. (2000);
Van der Schaft (2000); Ortega et al. (2001). Equation (1)
is then rewritten as follows :

�
x = [J(x)−R(x)]

∂H(x)

∂x
+ g(x)u

y = g(x)>
∂H
∂x

(4)

where y is the output.

It can be clearly seen for the pH models defined by
(3)(4) that the time derivative of the Hamiltonian storage
functionH(x) satisfies the energy balance equation Ortega
et al. (2001) below

dH(x)

dt
= −

[
∂H(x)

∂x

]>
R(x)

∂H(x)

∂x
+ u>y (5)

Thanks to (3), (5) becomes :

dH(x)

dt︸ ︷︷ ︸
stored power

≤ u>y︸︷︷︸
supplied power

(6)

From a physical point of view, inequality in (6) implies
that the total amount of energy supplied from external
source is always greater than the increase in the energy
stored in the system. Also, equality in (6) holds only if
the damping matrix R(x), that is strongly related to the
dissipation term, is equal to 0. Hence, the pH system (4) is
said to be passive with input u and output y corresponding
to the Hamiltonian storage function H(x) Van der Schaft
(2017); Bao and Lee (2007). This is one of advantageous
features of the pH representation and has been applied
for the control design, even for the stabilization of infinite
dimensional systems (see e.g., Alonso and Ydstie (2001);
Hoang and Phan (2016)).

We shall not elaborate any further on the pH representa-
tion here (for example, the concepts related to the cyclo-
passive/passive property or Dirac structure, etc.) and refer
the reader to Maschke et al. (2000); Van der Schaft (2000);
Ortega et al. (2002); Dörfler et al. (2009); Hoang et al.
(2017) for more information.

3. THE MASS-SPRING-DAMPER SYSTEM CASE
STUDY

To illustrate the concepts proposed in Section 2, we
illustrate our main points with a simple case study, that
is the mass-spring-damper system. Originally, the port-
Hamiltonian representation has been first considered for
electrical or mechanical systems as seen in the literature
(see e.g., (Ortega et al. (1998); Van der Schaft (2000);
Batlle (2005))).

A car and its suspension system traveling over a bumpy
road can be modeled as a mass-spring-damper system as
shown in Figure 1 Batlle (2005).

The following equation is derived using Newton’s second
law McCall (2010) 2 :

M
d2z(t)

dt2
= F − kz(t)− cdz(t)

dt
(7)

where :

• M is the mass of the body;
• F is the external force;
• k is the stiffness constant of the (linear) spring;
• c is the damping constant.

2 This belongs to the so-called (generalized) Euler-Lagrange equa-
tions of classical mechanics Ortega et al. (1998); Van der Schaft
(2000).
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Hình 1. A mass-spring-damper system.

Let x be the vector consisting of the movement z(t) and
the momentum of the body M dz(t)

dt , i.e. x = (x1, x2)> ≡(
z(t),M dz(t)

dt

)>
, (7) can be rewritten as follows :

dx1
dt

dx2
dt

 =

(
0 1

−1 −c

) kx1

x2
M

+

(
0

1

)
F (8)

The system dynamics (8) leads to a pH representation (4)
with :

J(x) =

(
0 1

−1 0

)
(9)

R(x) =

(
0 0

0 c

)
(10)

g(x) =

(
0

1

)
, u = F (11)

y =
x2
M
≡ dz(t)

dt
(the velocity) (12)

and,

H(x) =
1

2
kx21 +

1

2

x22
M

(13)

In this case, the Hamiltonian storage function H(x) (13)
is equal to the total energy of the system, (i.e., it charac-
terizes the amount of the elastic potential energy of the
spring and the kinetic energy of the body, respectively).
It therefore has the unit of energy. The damping matrix
R(x) (10) is symmetric and positive semi-definite.
Remark 1. As an analogy between mechanical and elec-
trical systems Firestone (1933), it is worth noting that a
second order ordinary differential equation of the series
RLC circuit operated under a voltage source V (t) can be
written as follows :

L
d2i(t)

dt2
+R

di(t)

dt
+

1

C
i(t) =

dV (t)

dt
where i(t) is the electric current. This is clearly equivalent
to (7) in some sense.

For the sake of illustration, a geometric shape of the
Hamiltonian storage function H(x) (13) is shown in Figure
2.

Hình 2. The Hamiltonian storage function H(x) = α1x
2
1 +

α2x
2
2 with α1 = α2 = 1

2 .

4. SOME FURTHER DISCUSSIONS

4.1 The proportional controller design

Let us state the following proposition.
Proposition 1. Under a zero state detectability condition
and the boundedness from below of the Hamiltonian
storage function H(x) by 0, it follows that an explicit
proportional static output feedback law of the form,

u = −Ky (14)
with K = K> > 0 a so-called damping injection gain,
renders the controlled pH system dissipative and therefore
asymptotically stabilized at the (singular) equilibrium x?.

Proof. From (6)(14), one obtains :
dH(x)

dt
≤ y>Ky < 0

The proof follows immediately by invoking La Salle’s
invariance principle Khalil (2002); Brogliato et al. (2007);
Ortega et al. (2002). A complete version of the proof can be
found in Hoang and Phan (2016). �
Remark 2. The convergence speed of the controlled system
goes faster by increasing the controller gain K. Better
performance of the controller can be proposed with the
gain K derived from the Ziegler–Nichols tuning method.
Remark 3. Interestingly, the proportional feedback law u
(14) can be considered in Figure 3 as control by simple
interconnection where the controller here is so that

yc = C(uc) = Kuc (15)
It can be checked easily that

uc(t)
>yc(t) + u(t)>y(t) = 0, ∀t (16)

since uc(t) = y(t) and u(t) = −yc(t). The interconnection
is therefore power continuous Ortega et al. (1998); Van der
Schaft (2017); Batlle (2005).

Note also that the feedback law (14) may make the overall
system worse when the Hamiltonian storage function H(x)
(or also, the power) at any equilibrium except the trivial
one x? is nonzero Ortega et al. (2001). The situation is
similar to that of the so-called dissipation obstacle Ortega
et al. (2002).

4.2 Numerical simulations

The simulations are carried out for the mass-spring-
damper system using MATLAB & SIMULINK.



Hình 3. A standard negative feedback interconnection
structure where Σ and C(·) are the plant and the
controller, respectively.

The open loop SIMULINK model designed for the sim-
ulations is given in Figure A.1 of Appendix with k =
0.25 (N/m), c = 0.5 (N/(s.m)) and M = 6.25 (kg) (see
also Longoria (2014)) 3 . The input force of the system is
a unit step, i.e., u(t) = S(t) where S(t) is the unit step
function.

The initial conditions are chosen to be x1(t = 0) =
x1,init = 3 and x2(t = 0) = x2,init = 0. Figure 4 shows
the time evolutions of the states of the system and the
storage function. It is shown that the storage function is
bounded from below by a positive scalar. In other words,
it is not equal to 0 since the states x1 and/or x2 converge
to the nonzero values at steady state (i.e., x1,ss = F

k and
x2,ss = 0).
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Hình 4. The states and storage function w.r.t. time.

Now, we propose to stabilize the system at the natural
equilibrium x? = (x?1, x

?
2)> = (0, 0)>. The control situ-

ation is that the system is operating normally with the
unit step input, at time t = t1 > 0, the unit step input
is switched off and the proportional feedback law (14) is
applied. The explicit expression of the manipulated input
is then expressed as follows :

3 It can be shown that the damping factor ζ := 1
2

c√
kM

equals 0.2.

The open loop system is therefore underdamped.

u(t) =
(
S(t)− S(t− t1)

)
−K x2

M
S(t− t1) (17)

where equations (14) and (12) have been used. The closed
loop SIMULINK model with the proportional feedback
law is given in Figure A.2 of Appendix with K = 2 and
t1 = 30 (s).

Figure 5 shows that the controlled Hamiltonian storage
function with the proportional feedback law (17) converges
to 0 as t → +∞. As consequence, the global asymptotic
convergence of the controlled states x to x? is guaranteed
as seen in Figure 6. Furthermore, the manipulated input
u (17) is physically admissible in terms of amplitude and
dynamics.
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Hình 5. The controlled Hamiltonian storage function with
the proportional feedback law.
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Hình 6. The controlled states and manipulated input w.r.t.
time with the proportional feedback law.

5. CONCLUSION

In this work, a port-based modeling of mass-spring-damper
systems is reintroduced and leads to the so-called port-
Hamiltonian representation. In this presentation, some
structural properties such as interconnection and damping
matrices and Hamiltonian storage function are explicitly



shown. Interestingly, those terms have clear physical mean-
ing. The feedback design and control scenarios proposed
for the simulations are main contributions of the paper.
As an important feature of the pH model, it remains now
to extend this structure to biochemical reaction systems
or multi-physics systems (see, e.g. Dörfler et al. (2009)).
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Phụ lục A. APPENDIX

Hình A.1. The open loop SIMULINK model.

Hình A.2. The closed loop SIMULINK model with the proportional feedback law.


